Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Molecules ; 28(22)2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-38005307

RESUMO

In this study, we assessed the effects of different harvest times (9 a.m., 1 p.m., and 5 p.m.) and hydrodistillation times (60, 90, and 120 min) on the yield, chemical composition, and antioxidant activity of the spearmint (Mentha spicata L.) essential oil (EO) sourced from the Amazon region. EO yield was ≥1.55% and was not significantly influenced (p ≥ 0.05) by the different harvest times and hydrodistillation times. Thirty-one different organic compounds were identified, of which menthol (91.56-95.68%), menthone (0.6-2.72%), and isomenthone (0.55-1.46%) were the major constituents. The highest menthol content in the EO was obtained from samples collected at 9 a.m., with a hydrodistillation time of 60-90 min, compared to other harvest and hydrodistillation times. This suggests that exposure to sun and light, which is greater at harvest times of 1 p.m. and 5 p.m., decreased the menthol content and altered the chemical composition of Mentha EO. Furthermore, the sample harvested at 9 a.m. and hydrodistilled for 60 min showed the highest antioxidant activity (61.67 equivalent mg of Trolox per g of EO), indicating that antioxidant activity is strongly affected by light exposure and the contact duration of the sample with boiling water during hydrodistillation.


Assuntos
Mentha spicata , Mentha , Óleos Voláteis , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Mentha/química , Mentol/farmacologia , Antioxidantes/farmacologia , Antioxidantes/química , Mentha spicata/química
2.
Molecules ; 28(18)2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37764258

RESUMO

Plectranthus ornatus is a medicinal and aromatic plant used in traditional and alternative medicine. In this study, leaves of P. ornatus were collected in two cities of the state of Pará, "Quatipuru" and "Barcarena", and were used with the objective of analyzing, through morphoanatomical data and histochemical and phytochemical studies of essential oil, the samples present structural differences and differences in their chemical composition. Anatomical and histochemical analyses were performed by transverse, using longitudinal sections of 8 µm to 10 µm to perform epidermal dissociation, diaphonization, and tests to identify classes of secondary metabolites. The essential oils were isolated by hydrodistillation, and the identification of the chemical composition was performed by gas chromatography coupled with mass spectrometry. The anatomical study shows that there is no difference between specimens collected in different locations, and stellate trichomes were identified. The histochemical study detected total lipids and acids, terpenes, polysaccharides, phenolic compounds, tannins, alkaloids, and calcium oxalate. The low essential oil yield may be related to the low density of secretory cells (glandular trichomes), the unidentified compounds in the highest concentration in the essential oil were in relation to the chemical composition of the essential oils, and the major compounds were α-pinene, sabinene, (E)-caryophyllene, caryophyllene oxide, and oct-1-en-3-ol. The results provide new information about the anatomy and histochemistry of P. ornatus.

3.
Molecules ; 28(15)2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37570784

RESUMO

The essential oils (OEs) of the leaves, stems, and spikes of P. marginatum were obtained by hydrodistillation, steam distillation, and simultaneous extraction. The chemical constituents were identified and quantified by GC/MS and GC-FID. The preliminary biological activity was determined by assessing the toxicity of the samples to Artemia salina Leach larvae and calculating the mortality rate and lethal concentration (LC50). The antioxidant activity of the EOs was determined by the DPPH radical scavenging method. Molecular modeling was performed using molecular docking and molecular dynamics, with acetylcholinesterase being the molecular target. The OES yields ranged from 1.49% to 1.83%. The EOs and aromatic constituents of P. marginatum are characterized by the high contents of (E)-isoosmorhizole (19.4-32.9%), 2-methoxy-4,5-methylenedioxypropiophenone (9.0-19.9%), isoosmorhizole (1.6-24.5%), and 2-methoxy-4,5-methylenedioxypropiophenone isomer (1.6-14.3%). The antioxidant potential was significant in the OE of the leaves and stems of P. marginatum extracted by SD in November (84.9 ± 4.0 mg TE·mL-1) and the OEs of the leaves extracted by HD in March (126.8 ± 12.3 mg TE·mL-1). Regarding the preliminary toxicity, the OEs of Pm-SD-L-St-Nov and Pm-HD-L-St-Nov had mortality higher than 80% in concentrations of 25 µg·mL-1. This in silico study on essential oils elucidated the potential mechanism of interaction of the main compounds, which may serve as a basis for advances in this line of research.


Assuntos
Óleos Voláteis , Piper , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Piper/química , Antioxidantes/farmacologia , Simulação de Acoplamento Molecular , Acetilcolinesterase
4.
PLoS One ; 18(8): e0289991, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37616214

RESUMO

Chemical composition of the essential oils (EOs) from the leaves of five Annonaceae species found in the amazon region was analyzed by Gas chromatography coupled to mass spectrometry. The antifungal activity of theses EOs was tested against Candida albicans, Candida auris, Candida famata, Candida krusei and Candida tropicalis. In addition, an in silico study of the molecular interactions was performed using molecular modeling approaches. Spathulenol (29.88%), α-pinene (15.73%), germacra-4(15),5,10(14)-trien-1-α-ol (6.65%), and caryophylene oxide (6.28%) where the major constitents from the EO of Anaxagorea dolichocarpa. The EO of Duguetia echinophora was characterized by ß-phellanderene (24.55%), cryptone (12.43%), spathulenol (12.30%), and sabinene (7.54%). The major compounds of the EO of Guatteria scandens where ß-pinene (46.71%), α-pinene (9.14%), bicyclogermacrene (9.33%), and E-caryophyllene (8.98%). The EO of Xylopia frutescens was characterized by α-pinene (40.12%) and ß-pinene (36.46%). Spathulenol (13.8%), allo-aromadendrene epoxide (8.99%), thujopsan-2-α-ol (7.74%), and muurola-4,10(14)-dien-1-ß-ol (7.14%) were the main chemical constituents reported in Xylopia emarginata EO. All EOs were active against the strains tested and the lowest inhibitory concentrations were observed for the EOs of D. echinophora, X. emarginata, and X. frutescens against C. famata the Minimum Inhibitory Concentration values of 0.07, 0.019 and 0.62 µL.mL-1, respectively. The fungicidal action was based on results of minimum fungicidal concentration and showed that the EOs showed fungicide activity against C. tropicalis (2.5 µL.mL-1), C. krusei (2.5 µL.mL-1) and C. auris (5 µL.mL-1), respectively. The computer simulation results indicated that the major compounds of the EOs can interact with molecular targets of Candida spp.


Assuntos
Annonaceae , Simulação por Computador , Cromatografia Gasosa-Espectrometria de Massas , Candida tropicalis
5.
Plants (Basel) ; 12(13)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37447058

RESUMO

Schinus terebinthifolia Raddi is widely used in traditional Brazilian medicine to treat respiratory diseases, as an antiseptic, anti-inflammatory, and hemostatic agent. This study aimed to evaluate the influence of climatic parameters on the yield, antioxidative capacity, and chemical composition of the S. terebinthifolia leaf essential oil. The specimen was collected monthly from October 2021 to September 2022. Leaf essential oils (EOs) were obtained by hydrodistillation, and their chemical compositions were analyzed by gas chromatography/mass spectrometry (GC/MS). Statistical analyses were performed to verify the climatic influences on the yields, chemical composition, and antioxidative capacity. The DPPH (2,2-diphenyl-1-picrylhydrazyl) radical-scavenging and inhibition of ß-carotene/linoleic acid oxidation assays were performed to assess the antioxidant activity. The leaf essential oil yields ranged from 0.1% (July) to 0.7% (May and September), averaging 0.5 ± 0.2%. There was no significant difference in essential oil production during the dry (0.4 ± 0.2%) and rainy (0.6 ± 0.1%) seasons. The main chemical constituents identified in essential oils were limonene (11.42-56.24%), δ-3-carene (8.70-33.16%) and (E)-caryophyllene (4.10-24.98%). The limonene annual average was 43.57 ± 12.74% and showed no statistical difference during the dry (40.53 ± 13.38%) and rainy (52.68 ± 3.27%) seasons. Likewise, the annual average of δ-3-carene was 22.55 ± 7.11%, displaying no statistical difference between dry (26.35 ± 7.90%) and rainy (31.14 ± 1.63%) seasons. The annual average of (E)-caryophyllene was 11.07 ± 7.15% and this constituent did not show a statistical difference in Tukey's test (p > 0.05) during the dry (12.72 ± 7.56%) and rainy (6.10 ± 1.78%) season. Limonene showed a moderate positive and significant correlation (p < 0.05) with precipitation (r = 0.56) and a weak correlation with temperature (r = -0.40), humidity (r = 0.40), and insolation (r = -0.44). All samples inhibited the oxidation in the ß-carotene/linoleic acid system (22.78-44.15%) but displayed no activity in the DPPH method.

6.
Plants (Basel) ; 12(14)2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37514241

RESUMO

Four species of the genus Hedychium can be found in Brazil. Hedychium coronarium is a species endemic to India and Brazil. In this paper, we collected six specimens of H. coronarium for evaluation of their volatile chemical profiles. For this, the essential oils of these specimens were extracted using hydrodistillation from plant samples collected in the state of Pará, Brazil, belonging to the Amazon region in the north of the country. Substance compounds were identified with GC/MS. The most abundant constituent identified in the rhizome and root oils was 1,8-cineole (rhizome: 35.0-66.1%; root: 19.6-20.8%). Leaf blade oil was rich in ß-pinene (31.6%) and (E)-caryophyllene (31.6%). The results from this paper allow for greater knowledge about the volatile chemical profile of H. coronarium specimens, in addition to disseminating knowledge about the volatile compounds present in plant species in the Amazon region.

7.
Nat Prod Res ; 37(19): 3344-3351, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35481816

RESUMO

In the present study, are extracted volatile concentrate from Ipomoea asarifolia Poir. and Ipomoea setifera (Desr.) Roem. & Schult. in five-month seasonal gradient. The flowers were subjected to simultaneous distillation - extraction (SDE). The chemical composition of the volatile concentrate was determined by gas chromatography (CG/MS) and (CG-FID). Principal Component Analysis (PCA) and Hierarchical Clustering Analysis (HCA) were performed with the chemical constituents. It was observed that the chemical composition of I. asarifolia varied more with seasonality in relation to the species I. setifera. Furthermore, there is a possibility that germacrene D and α-copaene, the main components of the variation volatile of I. asarifolia and with higher concentrations in the rainy months, have ecological importance, attracting specific pollinators for the rainy season. This is the first study to report the chemical composition of the volatile compounds of I. asarifolia and I. setifera along a seasonal gradient.

8.
Antioxidants (Basel) ; 11(12)2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36552618

RESUMO

Croton campinarensis Secco, A. Rosário & PE Berry is an aromatic species recently discovered in the Amazon region. This study first reports the chemical profile, antioxidant capacity, and preliminary toxicity to A. salina Leach of the essential oil (EO) of this species. The phytochemical profile of the essential oil was analyzed by gas chromatography (GC/MS) and (GC-FID). The antioxidant capacity of the EO was measured by its inhibition of ABTS•+ and DPPH• radicals. Molecular modeling was used to evaluate the mode of interaction of the major compounds with acetylcholinesterase (AChE). The results indicate that the EO yield was 0.24%, and germacrene D (26.95%), bicyclogermacrene (17.08%), (E)-caryophyllene (17.06%), and δ-elemene (7.59%) were the major compounds of the EO sample. The EO showed a TEAC of 0.55 ± 0.04 mM·L-1 for the reduction of the ABTS•+ radical and 1.88 ± 0.08 mM·L-1 for the reduction of the DPPH• radical. Regarding preliminary toxicity, the EO was classified as toxic in the bioassay with A. salina (LC50 = 20.84 ± 4.84 µg·mL-1). Through molecular docking, it was found that the majority of the EO components were able to interact with the binding pocket of AChE, a molecular target related to toxicity evaluated in A. salina models; the main interactions were van der Waals and π-alkyl interactions.

9.
Antioxidants (Basel) ; 11(10)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36290799

RESUMO

The essential oils (EOs) of Myrciaria floribunda (Mflo) and Myrcia sylvatica (Msyl) (Myrtaceae) were obtained by hydrodistillation. The analysis of volatile constituents was performed by GC/MS. Preliminary toxicity was assessed on Artemia salina Leach. The antioxidant capacity was measured by the ABTS•+ and DPPH• radical inhibitory activities. The results indicate that the Mflo EO had the highest yield (1.02%), and its chemical profile was characterized by high levels of hydrocarbon (65.83%) and oxygenated (25.74%) monoterpenes, especially 1,8-cineole (23.30%), terpinolene (22.23%) and α-phellandrene (22.19%). Regarding the Msyl EO, only hydrocarbon (51.60%) and oxygenated (46.52%) sesquiterpenes were identified in the sample, with (Z)-α-trans-bergamotene (24.57%), α-sinensal (13.44%), and (Z)-α-bisabolene (8.33%) at higher levels. The EO of Mflo exhibited moderate toxicity against A. salina (LC50 = 82.96 ± 5.20 µg.mL−1), while the EO of Msyl was classified as highly toxic (LC50 = 2.74 ± 0.50 µg.mL−1). In addition, relative to Trolox, the EOs of Mflo and Msyl showed significant inhibitory effects (p < 0.0001) against the DPPH• radical. This study contributes to the expansion of chemical and biological knowledge on the EOs of Myrtaceae species from the Amazon region.

10.
AoB Plants ; 14(5): plac039, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36196392

RESUMO

Coryanthes is one of the most fascinating genera of Stanhopeinae (Orchidaceae) because of its complex pollination mechanism and the peculiar structures of its flowers. Although Coryanthes macrantha is widely studied, investigation of the secretory structures and floral biology is important to understand the mechanisms and ecology of pollination, which deserve attention despite the difficulties of collecting fertile material in nature. We conducted a morpho-anatomical analysis of the floral and extrafloral secretory structures of C. macrantha to better understand the secretory structures, contribute to the knowledge of its floral biology and/or pollination processes and understand the ecological function of these structures. The analysis revealed that C. macrantha has epidermal osmophores with unicellular papillae that were foraged by male Eulaema bees, floral nectaries in the sepals and extrafloral nectaries in the bracts. In both the floral and extrafloral nectaries, the nectar is exuded by the stomata. Azteca ants foraged the bract and sepal nectaries in pre-anthesis and post-anthesis. We also described the secretory epidermis of pleuridia, and the mode of secretion of osmophores and nectaries and found that they attract specific foraging agents.

11.
Int J Mol Sci ; 23(19)2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36232474

RESUMO

Aedes aegypti L. (Diptera: Culicidae) is an important transmitter of diseases in tropical countries and controlling the larvae of this mosquito helps to reduce cases of diseases such as dengue, zika and chikungunya. Thus, the present study aimed to evaluate the larvicidal potential of the essential oil (EO) of Ocimum basilicum var. minimum (L.) Alef. The EO was extracted by stem distillation and the chemical composition was characterized by gas chromatography coupled with mass spectrometry (GC/MS and GC-FID). The larvicidal activity of EO was evaluated against third instar Ae. aegypti following World Health Organization (WHO) standard protocol and the interaction of the major compounds with the acetylcholinesterase (AChE) was evaluated by molecular docking. The predominant class was oxygenated monoterpenes with a concentration of 81.69% and the major compounds were limonene (9.5%), 1,8-cineole (14.23%), linalool (24.51%) and methyl chavicol (37.41%). The O. basilicum var. minimum EO showed unprecedented activity against third instar Ae. aegypti larvae at a dose-dependent relationship with LC50 of 69.91 (µg/mL) and LC90 of 200.62 (µg/mL), and the major compounds were able to interact with AChE in the Molecular Docking assay, indicating an ecological alternative for mosquito larvae control.


Assuntos
Aedes , Inseticidas , Ocimum basilicum , Óleos Voláteis , Infecção por Zika virus , Zika virus , Acetilcolinesterase , Animais , Eucaliptol , Cromatografia Gasosa-Espectrometria de Massas , Inseticidas/química , Inseticidas/farmacologia , Larva , Limoneno , Simulação de Acoplamento Molecular , Monoterpenos , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Compostos Fitoquímicos/farmacologia
12.
BMC Chem ; 16(1): 76, 2022 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-36210431

RESUMO

Bryophytes have a variety of bioactive compounds that can be used in biotechnological processes. The objective of this study was to know the volatile chemical composition of Octoblepharum albidum Hedw. from the Amazon and investigate its association with possible bioactive effects on insects. The volatile concentrate of O. albidum was obtained by micro-scale simultaneous distillation-extraction and analyzed by gas chromatography coupled to mass spectrometry and the identification of the compounds was based on system libraries and specialized literature. Twelve organic compounds (92.44% of the total) were identified. Hexadecanoic acid, oleic acid, E-isoeugenol, 1-octen-3-ol, and stearic acid were the major compounds. Most of the compounds have already been reported from bryophytes, while others have an unprecedented occurrence in the group. All identified compounds have biological activities reported in the literature and may participate in plant defense mechanisms against insects, causing mortality or developmental inhibition. In this study, we describe for the first time the volatile chemical composition of O. albidum from Brazil and provide evidence that this species is a source of bioactive compounds. The identified compounds have been reported in the literature to cause mortality or affect the biological parameters of insects, what suggests the possibility of their usage in the formulation of bioinsecticides.

13.
Antioxidants (Basel) ; 11(9)2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36139777

RESUMO

The essential oils (EOs) of Duguetia echinophora, D. riparia, Xylopia emarginata and X. frutescens (Annonaceae) were obtained by hydrodistillation and the chemical composition was analyzed by GC-MS. An antioxidant assay using the ABTS and DPPH radicals scavenging method and cytotoxic assays against Artemia salina were also performed. We evaluated the interaction of the major compounds of the most toxic EO (X. emarginata) with the binding pocket of the enzyme Acetylcholinesterase, a molecular target related to toxicity in models of Artemia salina. The chemical composition of the EO of D. echinophora was characterized by ß-phellandrene (39.12%), sabinene (17.08%) and terpinolene (11.17%). Spathulenol (22.22%), caryophyllene oxide (12.21%), humulene epoxide II (11.86%) and allo-aromadendrene epoxide (10.20%) were the major constituents of the EO from D. riparia. Spathulenol (5.65%) and caryophyllene oxide (5.63%) were the major compounds of the EO from X. emarginata. The EO of X. frutescens was characterized by α-pinene (20.84%) and byciclogermacrene (7.85%). The results of the radical scavenger DPPH assays ranged from 15.87 to 69.38% and the highest percentage of inhibition was observed for the EO of X. emarginata, while for ABTS radical scavenging, the antioxidant capacity of EOs varied from 14.61 to 63.67%, and the highest percentage of inhibition was observed for the EO of X. frutescens. The EOs obtained from D. echinophora, X. emarginata and X. frutescens showed high toxicity, while the EO of D. riparia was non-toxic. Because the EO of X. emarginata is the most toxic, we evaluated how its major constituents were able to interact with the Acetylcholinesterase enzyme. The docking results show that the compounds are able to bind to the binding pocket through non-covalent interactions with the residues of the binding pocket. The species X. emarginata and X. frutescens are the most promising sources of antioxidant compounds; in addition, the results obtained for preliminary cytotoxicity of the EOs of these species may also indicate a potential biological activity.

14.
J Food Sci ; 87(9): 4148-4161, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35986623

RESUMO

The use of yeasts as starter cultures is a promising alternative to produce fermented cacao with particular characteristics regarding the quality of aromas and physical and chemical characteristics that are accepted by the chocolate market. This study aimed to evaluate the physical and chemical transformations of cocoa beans during fermentation after inoculation with starter cultures of yeast species Pichia manshurica (PF) and Saccharomyces cerevisiae (SF), both previously isolated in cocoa bean fermentations in the Brazilian Amazon, in comparison with a fermentation without the inoculum addition (CF). During the fermentation time, which was carried out on a cocoa farm in Igarapé-Miri (Amazon biome, Pará, Brazil), the contents of phenolic compounds (catechin and epicatechin), sugars (glucose, fructose, and sucrose), acetic acid, and ethanol were monitored by HPLC, and the volatile compounds profiles were assessed by GC-MS. The starter culture of P. manshurica was able to produce fermented cocoa beans with highly desirable characteristics for the production of good quality chocolate: low acidity, a broad variety of aromatic compounds with floral, fruity, and sweet characteristics, in addition to showing high contents of catechin and epicatechin, which are known by their antioxidant properties. Therefore, the use of starter cultures with species of yeasts isolated in the Amazon region, during cocoa fermentation, is an alternative to obtain fermented seeds with high quality favoring the commercial agreements in the chocolate market by cocoa producers. PRACTICAL APPLICATION: The addition of starter cultures was able to produce cocoa beans with good quality. Yeasts species isolated and identified in Amazonian cocoa fermentation can improve the profiles of aromatic compounds. Catechin and epicatechin contents are higher in inoculated cocoa beans fermentations.


Assuntos
Cacau , Catequina , Antioxidantes , Cacau/química , Ecossistema , Etanol , Fermentação , Frutose , Glucose , Pichia , Saccharomyces cerevisiae , Sacarose , Açúcares
15.
Molecules ; 27(14)2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35889245

RESUMO

Essential oils are biosynthesized in the secondary metabolism of plants, and in their chemical composition, they can be identified different classes of compounds with potential antioxidant and biological applications. Over the years in the Amazon, several species of aromatic plants were discovered and used in traditional medicine. The literature has shown that essential oils extracted from amazon species have several biological activities, such as antioxidant, antibacterial, antifungal, cytotoxic, and antiprotozoal activities. These activities are related to the diversified chemical composition found in essential oils that, by synergism, favors its pharmacological action. In light of this vital importance, this study aimed at performing a review of the literature with particular emphasis on the chemical composition and biological activities in studies conducted with species collected in the Amazon, taking into consideration in particular the last 10 years of collection and research.


Assuntos
Óleos Voláteis , Antibacterianos/farmacologia , Antifúngicos/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Brasil , Óleos Voláteis/química , Óleos Voláteis/farmacologia
16.
Molecules ; 27(15)2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35897853

RESUMO

The essential oil (EO) of Calycolpus goetheanus (Myrtaceae) specimens (A, B, and C) were obtained through hydrodistillation. The analysis of the chemical composition of the EOs was by gas chromatography coupled with mass spectrometry CG-MS, and gas chromatography coupled with a flame ionization detector CG-FID. The phytotoxic activity of those EOs was evaluated against two weed species from common pasture areas in the Amazon region: Mimosa pudica L. and Senna obtusifolia (L.) The antioxidant capacity of the EOs was determined by (DPPH•) and (ABTS•+). Using molecular docking, we evaluated the interaction mode of the major EO compounds with the molecular binding protein 4-hydroxyphenylpyruvate dioxygenase (HPPD). The EO of specimen A was characterized by ß-eudesmol (22.83%), (E)-caryophyllene (14.61%), and γ-eudesmol (13.87%), while compounds 1,8-cineole (8.64%), (E)-caryophyllene (5.86%), δ-cadinene (5.78%), and palustrol (4.97%) characterize the chemical profile of specimen B's EOs, and specimen C had α-cadinol (9.03%), δ-cadinene (8.01%), and (E)-caryophyllene (6.74%) as the majority. The phytotoxic potential of the EOs was observed in the receptor species M. pudica with percentages of inhibition of 30%, and 33.33% for specimens B and C, respectively. The EOs' antioxidant in DPPH• was 0.79 ± 0.08 and 0.83 ± 0.02 mM for specimens A and B, respectively. In the TEAC, was 0.07 ± 0.02 mM for specimen A and 0.12 ± 0.06 mM for specimen B. In the results of the in silico study, we observed that the van der Waals and hydrophobic interactions of the alkyl and pi-alkyl types were the main interactions responsible for the formation of the receptor-ligand complex.


Assuntos
Herbicidas , Myrtaceae , Óleos Voláteis , Antioxidantes/química , Antioxidantes/farmacologia , Cromatografia Gasosa-Espectrometria de Massas , Herbicidas/farmacologia , Simulação de Acoplamento Molecular , Myrtaceae/química , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia
17.
Molecules ; 27(15)2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35897944

RESUMO

In this paper, we evaluated the drug-receptor interactions responsible for the antimicrobial activity of thymol, the major compound present in the essential oil (EO) of Lippia thymoides (L. thymoides) Mart. & Schauer (Verbenaceae). It was previously reported that this EO exhibits antimicrobial activity against Candida albicans (C. albicans), Staphylococcus aureus (S. aureus), and Escherichia coli (E. coli). Therefore, we used molecular docking, molecular dynamics simulations, and free energy calculations to investigate the interaction of thymol with pharmacological receptors of interest to combat these pathogens. We found that thymol interacted favorably with the active sites of the microorganisms' molecular targets. MolDock Score results for systems formed with CYP51 (C. albicans), Dihydrofolate reductase (S. aureus), and Dihydropteroate synthase (E. coli) were -77.85, -67.53, and -60.88, respectively. Throughout the duration of the MD simulations, thymol continued interacting with the binding pocket of the molecular target of each microorganism. The van der Waals (ΔEvdW = -24.88, -26.44, -21.71 kcal/mol, respectively) and electrostatic interaction energies (ΔEele = -3.94, -11.07, -12.43 kcal/mol, respectively) and the nonpolar solvation energies (ΔGNP = -3.37, -3.25, -2.93 kcal/mol, respectively) were mainly responsible for the formation of complexes with CYP51 (C. albicans), Dihydrofolate reductase (S. aureus), and Dihydropteroate synthase (E. coli).


Assuntos
Anti-Infecciosos , Proteínas de Escherichia coli , Lippia , Óleos Voláteis , Verbenaceae , Anti-Infecciosos/farmacologia , Candida albicans , Carbono-Oxigênio Ligases , Di-Hidropteroato Sintase , Escherichia coli , Lippia/química , Simulação de Acoplamento Molecular , Monoterpenos/química , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Staphylococcus aureus , Tetra-Hidrofolato Desidrogenase , Timol/química , Timol/farmacologia
18.
Molecules ; 27(13)2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35807444

RESUMO

Molecular modeling approaches are used in a versatile way to investigate the properties of diverse organic and inorganic structures such as proteins, biomolecules, nanomaterials, functionalized nanoparticles, and membranes. However, more detailed studies are needed to understand the molecular nature of interactions established in gelatin biofilms impregnated with bioactive compounds. Because of this, we used computational methods to evaluate how the major compounds of Piper divaricatum essential oil can interact with the gelatin biofilm structure. For this, we used as inspiration the paper published, where various properties of the essential oil impregnated gelatin biofilm P. divaricatum are reported. After our computer simulations, we related our molecular observations to biofilm's structural and mechanical properties. Our results suggest that the major compounds of the essential oil were able to interrupt intermolecular interactions between the chains of the biofilm matrix. However, the compounds also established interactions with the amino acid residues of these chains. Our molecular analyses also explain changes in the structural and mechanical properties of the essential oil-impregnated biofilm. These results can support the planning of functional packaging impregnated with bioactive compounds that can protect food against microorganisms harmful to human health.


Assuntos
Óleos Voláteis , Piper , Biofilmes , Matriz Extracelular de Substâncias Poliméricas , Gelatina/química , Humanos , Óleos Voláteis/química
19.
Molecules ; 26(23)2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34885839

RESUMO

The essential oils of three specimens of Myrcia multiflora (A, B and C) and Eugenia florida were extracted by hydrodistillation, and the chemical compositions from the essential oils were identified by gas chromatography and flame ionization detection (CG/MS and CG-FID). The fungicide potential of the EOs against five fungicide yeasts was assessed: Candida albicans INCQS-40175, C. tropicalis ATCC 6258, C. famata ATCC 62894, C. krusei ATCC 13803 and C. auris IEC-01. The essential oil of the specimen Myrcia multiflora (A) was characterized by the major compounds: α-bulnesene (26.79%), pogostol (21.27%) and δ-amorphene (6.76%). The essential oil of the specimen M. multiflora (B) was rich in (E)-nerolidol (44.4%), (E)-γ-bisabolene (10.64%) and (E,E)-α-farnesene (8.19%), while (E)-nerolidol (92.21%) was the majority of the specimen M. multiflora (C). The sesquiterpenes seline-3,11-dien-6-α-ol (12.93%), eremoligenol (11%) and γ-elemene (10.70%) characterized the chemical profile of the EOs of E. florida. The fungal species were sensitive to the essential oil of M. multiflora (B) (9-11 mm), and the lowest inhibitory concentration (0.07%) was observed in the essential oil of M. multiflora (A) against the yeasts of C. famata. Fungicidal action was observed in the essential oils of M. multiflora (A) against C. famata, with an MIC of 0.78 µL/mL and 3.12 µL/mL; C. albicans, with an MFC of 50 µL/mL and M. multiflora (C) against C. albicans; and C. krusei, with a MFC of 50 µL/mL.


Assuntos
Antifúngicos/química , Antifúngicos/farmacologia , Eugenia/química , Myrtaceae/química , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Anti-Infecciosos/farmacologia , Testes de Sensibilidade Microbiana , Extratos Vegetais/farmacologia , Análise de Componente Principal , Leveduras/efeitos dos fármacos
20.
Molecules ; 26(23)2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34885940

RESUMO

Peperomia Ruiz and Pav, the second largest genus of the Piperaceae, has over the years shown potential biological activities. In this sense, the present work aimed to carry out a seasonal and circadian study on the chemical composition of Peperomia circinata essential oils and aromas, as well as to evaluate the preliminary toxicity in Artemia salina Leach and carry out an in silico study on the interaction mechanism. The chemical composition was characterized by gas chromatography (GC/MS and GC-FID). In the seasonal study the essential oil yields had a variation of 1.2-7.9%, and in the circadian study the variation was 1.5-5.6%. The major compounds in the seasonal study were ß-phellandrene and elemicin, in the circadian they were ß-phellandrene and myrcene, and the aroma was characterized by the presence of ß-phellandrene. The multivariate analysis showed that the period and time of collection influenced the essential oil and aroma chemical composition. The highest toxicity value was observed for the essential oil obtained from the dry material, collected in July with a value of 14.45 ± 0.25 µg·mL-1, the in silico study showed that the major compounds may be related to potential biological activity demonstrated by the present study.


Assuntos
Artemia/efeitos dos fármacos , Óleos Voláteis/análise , Óleos Voláteis/toxicidade , Peperomia/química , Monoterpenos Acíclicos/análise , Monoterpenos Acíclicos/toxicidade , Alcenos/análise , Alcenos/toxicidade , Animais , Monoterpenos Cicloexânicos/análise , Monoterpenos Cicloexânicos/toxicidade , Pirogalol/análogos & derivados , Pirogalol/análise , Pirogalol/toxicidade , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...